一人類の夢 波力発電 日本発の技術で挑む~往復型回転加速式発電

GLOBAL ENERGY HARVEST CO.

株式会社グローバルエナジーハーベスト

日本が抱えるエネルギー問題

自給率の低さや、化石燃料に依存したエネルギーシステムを抱える日本。 国の経済のためにも、地球温暖化を防ぐためにも、 エネルギー問題の解決が必要不可欠です。

政府が 2018 年に決定した 2030 年、2050 年に向けたエネルギー政策 「第6次エネルギー基本計画」

長期的に安定した持続的、 自立的なエネルギー供給 経済社会の更なる発展と 国民生活の向上 世界の持続的な発展への貢献

エネルギー問題を解決すべく、 当社はこれまでにない、全く新しい発電技術を実現させます。

次世代波力と 他の再生エネルギーとの年間発電量比較

太陽光 < 波力 年間 8.5 倍

圧倒的な発電量 同じ発電能力を持つ設備で比較した場合

波力 > 風力 ^{年間} **4.5 倍**

同面積あたりのエネルギー比 20~30倍

他再生可能エネルギーとの稼働率比較

太陽光

[稼働率]

12~14%

陸上風力

[稼働率]

20%

洋上風力

[稼働率]

30%

波力

[稼働率]

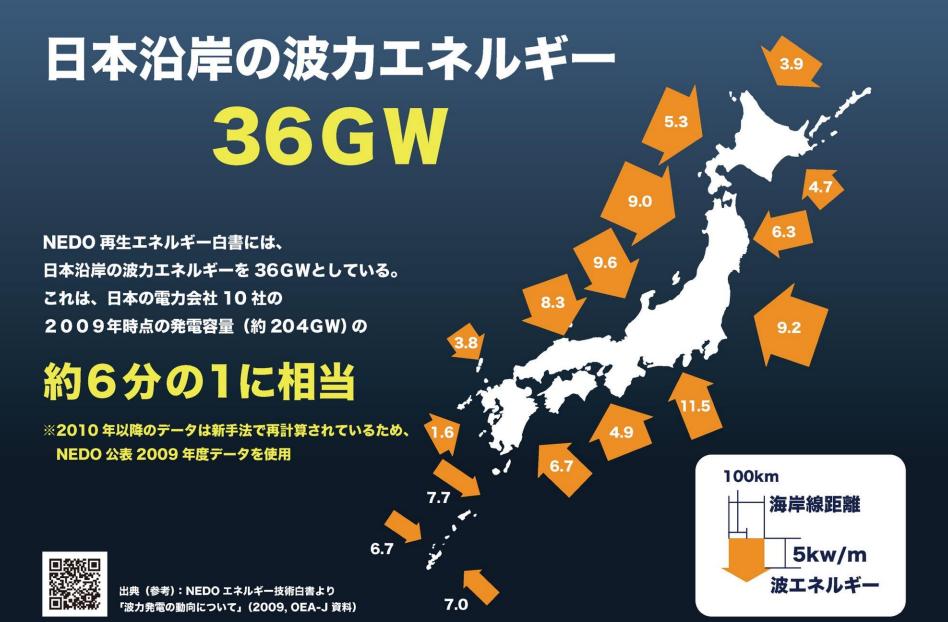
約95%

※ メンテナンス期間を含む実質稼働

• • • • • • •

波力発電は24時間100%の安定稼働

株式会社グローバルエナジーハーベストは、 持続的、自立的なエネルギー供給を実現させるべく"海" に着目しました。


地球の表面積の7割は海。 そして、日本は島国。

再生可能エネルギーの中で

最も大きなポテンシャルを持っている海洋エネルギー。

世界中で数十年前から試行されながらも実現できていない「波力発電」を

当社の新しい発想と情熱で実現させます。

これまでに世界中で試行されながら、なぜ実現できていないのか?

波力発電の3大課題

コスト

安全性

漁場問題

サビや海洋生物付着の 対策費用

送電ケーブルの断線

漁船航路の妨害

長大な海底ケーブルの 設置費用

台風・高波による 破損

魚とのバッティング

定期的な潜水士による メンテナンス費用

漂流や船との衝突に よる破損

漁網の破損

波力発電の課題

コスト

安全性

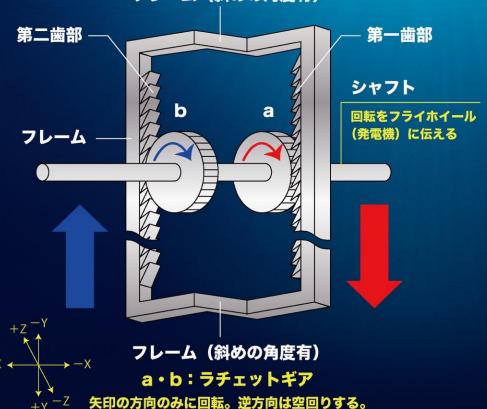
漁場問題

3大課題をすべて解決する 新しい技術を開発

[耐用年数]

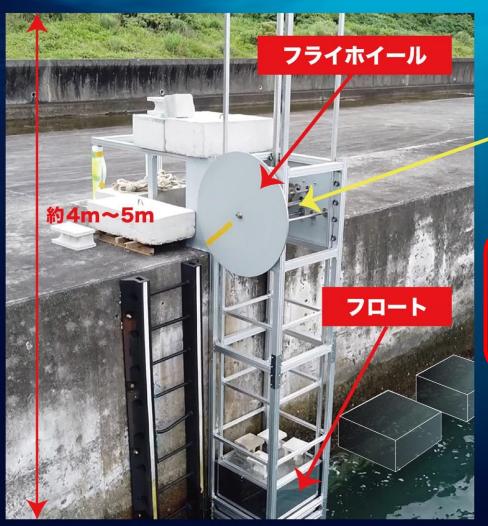
海水から 発**電機**(ダイナモ) を隔離 港内岸壁 〈未利用地〉 防波堤周辺

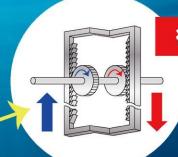
世界初の波力発電


登録番号 特許6779481 特許6998021

弊社の特許技術

往復回転加速式ギア


ギアの変換ロスについて『約5%』となる


フレーム(斜めの角度有)

「往復回転加速式ギア」+「フライホイール」の効果

往復回転加速式ギア

[発電時間の延長]

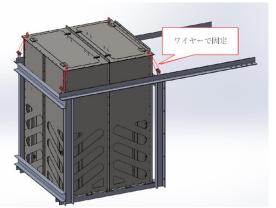
「フライホイール」を取り付けることにより、「リニア発電式」等の波力発電と比較して、 発電時間を延長させる効果がある。

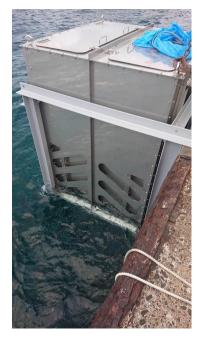
[様々な波長にも対応可能]

小型の「フロート」を複数個設置することにより、 短い波長の波にも対応することが可能。

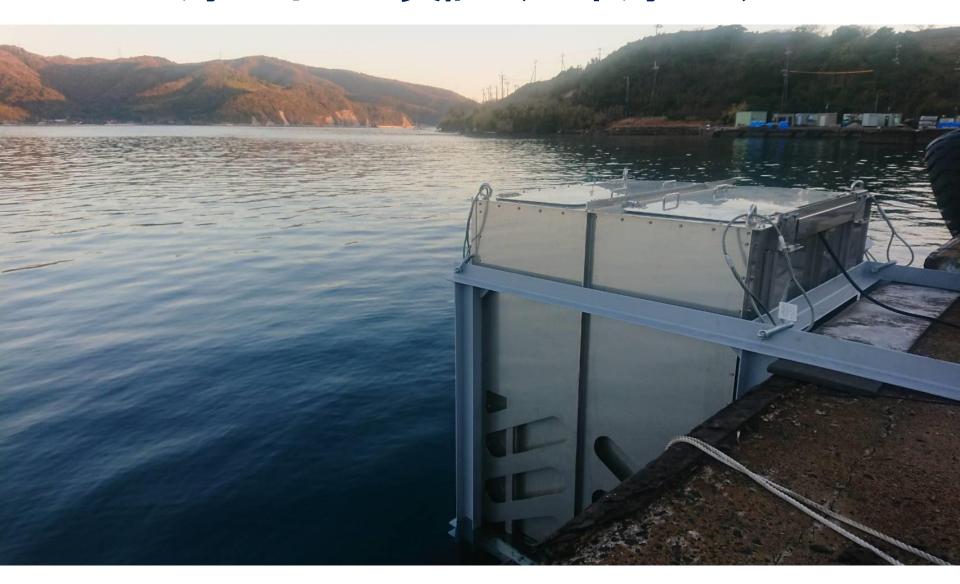
5回の実証を経て最新モデルに変化

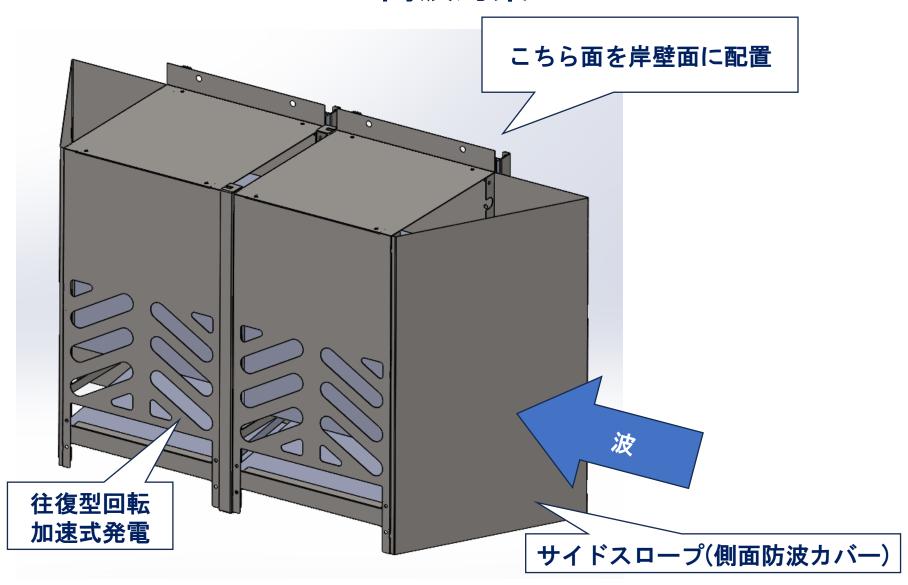
最新モデル


最新モデルの設置は、2ステップで可能!


固定フレームを岸壁に

往復型回転加速式発電 を固定フレームに挿入





設置完成

海士町での実証(日本海Ver.)

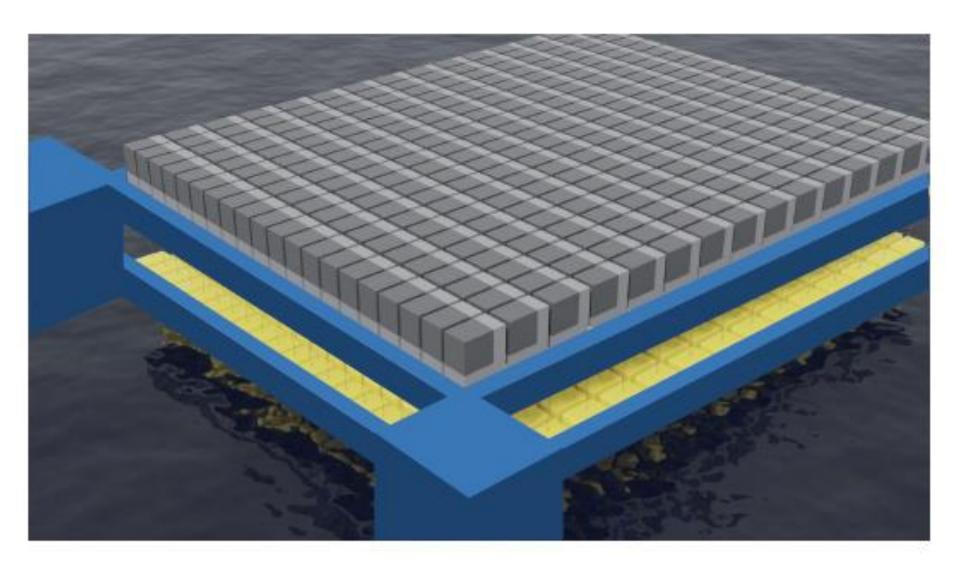
高波対策

「往復型回転加速式発電」の発電能力(発電出力)

:約20kW/システム

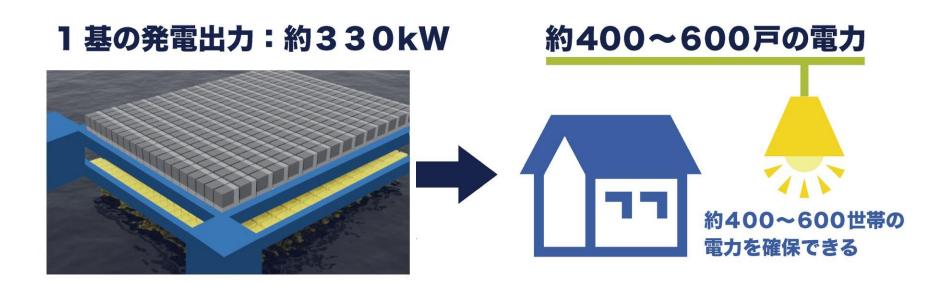
設備利用率:約90%(想定)

1ヶ月当たりの発電量:約13MWh


※約30~70戸分に相当

* 「一般家庭の一日当たりの標準消費電力量」は、「6.1kWh~13.1kWh」 と想定している。

世帯数	1人	2人	3人	4人
使用量/日	6.1kWh	10.5kWh	12.2kWh	13.1kWh
1人あたり の使用量/ 日	6.1kWh	5.25kWh	4.06kWh	3.275kWh
使用量/月	185kWh	320kWh	370kWh	400kWh


出典:https://ecodenchi.com/electricitypost-cut/

将来像〈大規模化:数MWを目指す〉

発電出力

1基で約400~600戸の電力が賄える!

日本国内に約3,000~6,000基設置可能と想定!

開発の背景

同時に3つの国プロに採用!

※国プロ=国の研究開発プロジェクト

2019年度~2022年度

NEDO 国立研究開発法人新エネルギー・ 産業技術総合開発機構 2020年度

2020年度

「循環型波力揚水発電」の開発は、

NEDO の他、総務省、国土交通省からも受託研究を受けています。

マスメディアによる報道

世界で海洋エネルギー技術の開発が進む			
英ボンボラウェイブパワー	波の動きでゴムがへこむことで発電する 装置を開発、6月にも実証		
米カルウェイブパワー テクノロジーズ	波の変化を利用して発電、2021年9月 からカリフォルニア州で実証始める		
商船三井	沖縄県で25年ごろに1000キロワット 規模の海洋温度差発電の建設目指す		
九電みらいエナジー	22年度から長崎県で潮流発電の実証を 岡田規保で開始		
グローバルエナジー ハーベスト	独自の波力発電機を開発、8月から沖縄 県で実証開始		

出典:日本経済新聞(2022年4月1日)

事業化スケジュール 10年以内に、日本国内に3,000基以上稼働 2024年から実用化

2021年3月 中型基による実証(島根県隠岐の島海士町) NPO法人 日本波力発電普及推進協会 設立 2022年2月 →波力発電を導入するためのガイドラインを提供 2022年11月 実証基完成 ▶ 実証スタート(沖縄県久米島町) 2024年 往復型回転加速式発電 商品化 年間 200基以上のペースによる増産を予定 2026年 現在「設置候補地:58個所」、再エネ事業者から予約注文有 2031年 日本国内に 1,500基以上稼働を目標

体制

長岡技術科学大学 Nagacka University of Technology

高橋 勉 教授研究室

琉球大学 University of the Rylikylis

藤井 智史 教授

導入候補地選定における協力

GLOBAL ENERGY HARVEST CO.

株式会社グローバルエナジーハーベスト

Initiative for Global Arts & Sciences

水環境研究室

「造波装置」を使用した実験

量産体制の整った 製造委託先(非公開)

[資本提携先] 「全国への販売」において協力 [資本提携先] 本事業に全面協力⇒製造委託予定 弊社既存株主の信頼関係 [資本提携先] 白島(北九州)等の導入候補施設を 多数所有⇒実験協力 [弊社の提携先] 設計・製造

主な事業内容

企業名	株式会社グローバルエナジーハーベスト
設立	2006年9月21日
	2022 年 2 月 17 日株式会社音力発電より社名変更を行う
資本金	1 億円
本社所在地	東京都三鷹市中原4丁目26-7
拠点体制(工場・営業所など)	藤沢支社・研究所:神奈川県藤沢市湘南台1-1-6
代表取締役	速水 浩平
従業員数	15名 (役員等を含む)
年商規模	1 億円
株主(主要提携先のみ記載)	ENEOS 夕藤八ザマ

KOKUYO

日本道路、タキロンシーアイ等

日本発世界初の新製品を研究開発・製造・販売。
代表的な製品となる「発電床 *」や「振力電池 *」をはじめとする「エネルギーハーベスティング」技術は、「電池レス IoT センサ」等として様々な分野において需要がある。現在、「循環型波力揚水発電」の製品化に注力している。

コア技術
「循環型波力揚水発電™」技術、「発電床 *」や、「振力電池 *」をはじめとする「エネルギーハーベスティング」技術、「電池レス IoT センサ」技術

認定
中小企業のものづくり基盤技術の高度化に関する法律第4条第1項の規定に基づく特定研究開発等計画の認定(法認定)、三菱 UFJ 技術育成財団 助成対象支援企業、

神奈川県「創造的新技術研究開発計画」認定

慶應義塾大学発技術ベンチャー企業として、自社開発の複数の特許技術を使用した

株式会社グローバルエナジーハーベスト

当社は SDGs が掲げている目標に向けて取り組んでいます。

Copyright ©2005-2024 株式会社グローバルエナジーハーベスト All rights reserved